285 research outputs found

    Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process

    Get PDF
    A laboratory-scale anaerobic–anoxic/nitrification sequencing batch reactor (A2N- SBR) fed with domestic wastewater was operated to examine the effect of varying ratios of influent COD/P, COD/TN and TN/P on the nutrient removal. With the increased COD/P, the phosphorus removals exhibited an upward trend. The influent TN/P ratios had a positive linear correlation with the phosphorus removal efficiencies, mainly because nitrates act as electron acceptors for the phosphorus uptake in the A2N-SBR. Moreover, it was found that lower COD/TN ratio, e.g. 3.5, did not significantly weaken the phosphorus removal, though the nitrogen removal first decreased greatly. The optimal phosphorus and nitrogen removals of 94% and 91%, respectively were achieved with influent COD/P and COD/ TN ratios of 19.9 and 9.9, respectively. Additionally, a real-time control strategy for A2N-SBR can be undertaken based on some characteristic points of pH, redox potential (ORP) and dissolved oxygen (DO) profiles in order to obtain the optimum hydraulic retention time (HRT) and improve the operating reliabili

    Rotating biological contactors for wastewater treatment - A review

    Get PDF
    Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g m−2 d−1 with nitrogen rich wastewaters. Different media types can be used to improve organic/nitrogen loading rates through selecting for different bacterial groups. The RBC has been applied with only limited success for enhanced biological phosphorus removal and attained up to 70% total phosphorus removal. Compared to other biofilm processes, RBCs had 35% lower energy costs than trickling filters but higher demand than wetland systems. However, the land footprint for the same treatment is lower than these alternatives. The RBC process has been used for removal of priority pollutants such as pharmaceuticals and personal care products. The RBC system has been shown to eliminate 99% of faecal coliforms and the majority of other wastewater pathogens. Novel RBC reactors include systems for energy generation such as algae, methane production and microbial fuel cells for direct current generation. Issues such as scale up remain challenging for the future application of RBC technology and topics such as phosphorus removal and denitrification still require further research. High volumetric removal rate, solids retention, low footprint, hydraulic residence times are characteristics of RBCs. The RBC is therefore an ideal candidate for hybrid processes for upgrading works maximising efficiency of existing infrastructure and minimising energy consumption for nutrient removal. This review will provide a link between disciplines and discuss recent developments in RBC research and comparison of recent process designs are provided (Section 2). The microbial features of the RBC biofilm are highlighted (Section 3) and topics such as biological nitrogen removal and priority pollutant remediation are discussed (Sections 4 and 5). Developments in kinetics and modelling are highlighted (Section 6) and future research themes are mentioned

    Rövid tudosétás a consequentiakrul

    Get PDF
    Photograph of the remains of the FUMC Cross lying on the ground

    Microbial extracellular enzyme activity affects performance in a full-scale modified activated sludge process

    Get PDF
    The rate-limiting step of wastewater treatment is the breakdown of polymers by extracellular enzyme activity (EEA). The efficacy of EEA on biomass from full scale conventional activated sludge (AS) and modified AS with bench scale and full scale rotating biofilm reactors (RBR) was compared. The maximum amino-peptidase EEA was 394 ± 34 μmolL−1 min−1 for the bench RBR which was 11.7 and 4.5 times greater than maximum α-glucosidase and phosphatase EEA in these reactors. At full scale the RBR gave ~4.6, 13.5 and 6.3 times the EEA for amino-peptidase, α-glucosidase and phosphatase (based on enzyme Vmax) compared to the highest EEA in conventional AS biomass. Controlled overloading of the bench RBRs revealed that EEA increased with OLR up to 190 g tCOD m−2d−1 and further increases in OLR reduced the EEA. Pretreatment of wastewater by EEA in the RBR was linked to better performance of the modified activated sludge process. Maintaining high EEA of biofilms is critical for the design of high OLR wastewater treatment systems

    Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors

    Get PDF
    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH4-N, and Ca2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite

    The role of pH on the biological struvite production in digested sludge dewatering liquors

    Get PDF
    Struvite production mediated by bacteria has opened up a new route for phosphorus recovery from wastewater streams but its application to digested sludge dewatering liquors is not yet well understood. This study investigates the growth and biological struvite production of selected bacteria in wastewater liquors with pHs between 5.7 to 9.1. The bacterial growth was assessed through flow cytometry. Bacillus pumilus, Halobacterium salinarum and Brevibacterium antiquum remained viable at pHs between 5.7 to 9.1 but B. antiquum was able to grow at pHs between 7.3 to 7.8. Further analysis allowed the identification of crystals as struvite in tests between pH 7.3 to 8.3. All strains were capable of producing struvite at a range of pHs, but the highest production of 135–198 mg/L was observed for pHs between 7.3 to 8.3. At pHs > 8.3, precipitation of struvite and calcium compounds was observed in inoculated and non-inoculated tests. This study demonstrates that biological struvite production can occur at a wide range of pHs, hence significantly different from chemical struvite precipitation that occurs at pH > 8.3, making it a potentially viable process for phosphorus recovery as struvite from wastewater streams and sludge liquors without strict pH control

    The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment

    Get PDF
    It is well known that filtration removal efficiency falls with an increase in flow rate; however, there is limited supporting experimental data on how removal efficiency changes for filters with multiple layers of media and for wastewater filtration, a practice that is becoming more common. Furthermore, information is not available on the characteristics of particles that are removed at different flow rates. Here, a quadruple media filter was operated at hydraulic loading rates (HLRs) between 5 and 60 mh−1 with subsequent measurement of total suspended solids, turbidity and particle size distribution (PSD). Samples were collected from the filter influent, effluent and also from between media layers. Pressure changes across the filter layers were also measured. The solids removal efficiency of the filter varied inversely with the increase in filtration rate. However, the multiple media layers reduced the negative impact of increased HLR in comparison to a single media filter. High filtration rates were shown to transport solids, such that particle retention and headloss development was distributed across the entire depth of the multi-media filter. There was also a progressive decrease in the suspension particle size leaving each of the filter layers. The particle hydrodynamic force simulation was consistent with the changes in measured PSD through the filter layers

    Forecasting the impact of virtual environment technology on maintenance training

    Get PDF
    To assist NASA and the Air Force in determining how and when to invest in virtual environment (VE) technology for maintenance training, we identified possible roles for VE technology in such training, assessed its cost-effectiveness relative to existing technologies, and formulated recommendations for a research agenda that would address instructional and system development issues involved in fielding a VE training system. In the first phase of the study, we surveyed VE developers to forecast capabilities, maturity, and estimated costs for VE component technologies. We then identified maintenance tasks and their training costs through interviews with maintenance technicians, instructors, and training developers. Ten candidate tasks were selected from two classes of maintenance tasks (seven aircraft maintenance and three space maintenance) using five criteria developed to identify types of tasks most likely to benefit from VE training. Three tasks were used as specific cases for cost-benefit analysis. In formulating research recommendations, we considered three aspects of feasibility: technological considerations, cost-effectiveness, and anticipated R&D efforts. In this paper, we describe the major findings in each of these areas and suggest research efforts that we believe will help achieve the goal of a cost-effective VE maintenance training system by the next decade

    Industrial wastewater treatment through bioaugmentation

    Get PDF
    Bioaugmentation of activated sludge processes through the addition of microorganisms is employed with the aim of enhancing treatment, in particular the removal of priority pollutants. With industrial wastewaters, studies have covered target pollutants including ammonia and polycyclic aromatic hydrocarbons (PAHs): compounds that are regulated around the globe. However, bioaugmentation is a technique that has been associated with doubt in regard to its ability to benefit treatment processes. Failure of bioaugmentation has been reported to be associated with numerous factors that include the growth rate being lower than the rate of washout, insufficient inoculum size and substrate availability. Limitations of bioaugmentation can be overcome through techniques that include increased inocula dosing, pre-acclimatisation of inocula in side-stream reactors, addition of nutrients and surfactants and application of sufficient acclimatisation periods. Surveys of the literature show that a key area for further research should be towards acquiring a better understanding of the degradation pathways where bioaugmentation is applied. There also remains a need to undertake bioaugmentation efficacy studies at full scale with test and control streams. Further reporting on the economic viability of the technique is also necessary
    • …
    corecore